Ammonium-Chloride-Potassium Lysing Buffer Treatment of Fully Differentiated Cells Increases Cell Purity and Resulting Neotissue Functional Properties.
نویسندگان
چکیده
Juvenile and fetal, primary, fully differentiated cells are widely considered to be ideal cell types for tissue engineering applications. However, their use in tissue engineering may be hindered through contamination by undesirable cell types. These include blood-associated cells as well as unwanted resident cell types found both in healthy and pathologic donor tissues. Ammonium-chloride-potassium (ACK) lysing buffer is used to lyse red blood cells (RBCs) during the isolation of stem cell populations, but has not been explored for the purification of fully differentiated cells. This study sought to investigate the effect of ACK buffer treatment of freshly isolated, fully differentiated cells to increase cell purity and enhance the formation of biofunctional engineered neotissues; this was tested in the well-established cartilage tissue engineering model of the self-assembling process using fetal ovine articular chondrocytes (foACs) and juvenile bovine articular chondrocytes (jbACs). ACK buffer treatment of foACs and jbACs decreased the number of contaminating RBCs by over 60% and additionally reduced the number of apoptotic chondrocytes in the cell isolates. Reducing the number of contaminating RBCs removed cellular detractors to the self-assembling process and eliminated an apoptotic stimulus, thus improving neocartilage homogeneity, chondrocyte distribution, and extracellular matrix deposition within the neotissues. For example, in foAC neocartilage, ACK buffer treatment ultimately led to a 170% increase in compressive aggregate modulus, a 130% increase in shear modulus, an 80% increase in tensile modulus, and a 130% increase in ultimate tensile strength of the neocartilage. This work represents the first time that ACK buffer has been used to purify fully differentiated cells and subsequently increase the functional properties of neotissue.
منابع مشابه
یافته های تازه درباره سلولهای پاریتال معده
During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...
متن کاملSynthesis of Ammonium Dinitramide by Nitration of Potassium and Ammonium Sulfamate. The Effect of Sulfamate Conterion on ADN Purity
Nitration of potassium sulphamate was carried out using a mixture of sulphuric and nitric acid at -30 °C. The reaction time was optimized at the mole ratio of sulphuric to nitric acid of (1:3.5). The difference in product yield by changing the potassium to ammonium sulphamate was studied throughly. It was found that both the yield and purity of the product is better starting with potassium ...
متن کاملCadmium chloride treatment of rats significantly impairs membrane integrity of mesenchymal stem cells via electrolyte imbalance and lipid peroxidation, a possible explanation of Cd related osteoporosis
Objective(s): Bone marrow mesenchymal stem cells (MSCs) play an important role in bone health. Cadmium causes osteoporosis, but the exact mechanisms of its effect on MSCs are not known. Materials and Methods: Rats were treated with cadmium chloride (40 mg/l) in drinking water for six weeks, and then the biochemical and morphological studies on MSCs were carried out as a cellular backup for oste...
متن کاملGain of function of Kir4.1 channel increases cell resistance to changes of potassium fluxes and cell volume evoked by ammonia and hypoosmotic stress.
The Kir4.1 channel is an inward rectifying potassium channel involved in the control of potassium and water movement in mammalian cells. To evaluate independently the role of Kir4.1 alone and without interaction with other cellular effectors, we compared (86)Rb fluxes and cell volume in Kir4.1 transfected cells (Kir4.1(+)) with cells transfected with an empty vector (Kir4.1(-)). Transfection wi...
متن کاملAn empirical technique for prediction of nucleation mechanism and interfacial tension of potassium chloride nanoparticles
Prediction of the nucleation mechanism is one of the most critical factors in the design of a crystallization system. Information about the nucleation mechanism helps to control the size, shape, size distribution, and purity of the produced crystals. When the crystallization method is used for producing nanoparticles, the nucleation mechanism should be predicted. In this study, an empirical cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2016